$\begingroup$
I had seen a solution elsewhere lớn this problem but get stuck on understanding the steps- please help!
13.7k20 gold badges67 silver badges148 bronze badges
$\endgroup$
1
$\begingroup$
$\cos(2\cdot 2A)= \cos^2 2A-\sin^2 2A=(\cos^2 A- \sin^2 A)^2-(2\sin A \cos A)^2=\cos^4 A -2\sin^2 A \cos^2 A + \sin^4 A-4 \sin^2 A \cos^2 A$
answered May 11, năm trước at 20:06
nadia-lizanadia-liza
1,8731 gold badge12 silver badges16 bronze badges
$\endgroup$
$\begingroup$
\begin{align}\cos(4A)&=\cos(2A+2A) \\ &= \cos^2(2A)-\sin^2(2A) \\ &=\cos(2A)\cos(2A)-(2\sin(2A)\cos(2A))^2 \\ &=(\cos^2(2A)-\sin^2(2A))(\cos^2(2A)-\sin^2(2A)) - 4\cos^2(2A)\sin^2(2A) \\ &=(\cos^4(2A)-2\cos^2(2A)\sin^2(2A)+\sin^4(2A))- 4\cos^2(2A)\sin^2(2A) \\ &=\cos^4(2A)-6\cos^2(2A)\sin^2(2A)+\sin^4(2A)\end{align}
answered May 11, năm trước at 20:05
CookieCookie
13.7k20 gold badges67 silver badges148 bronze badges
$\endgroup$
2
$\begingroup$
$$\cos(4A) + i \sin(4A) = e^{4Ai} = \left(e^{Ai}\right)^4 = (\cos(A) + i\sin(A))^4$$
Expand the binomial and equate the real parts.
I realize this is probably beyond the scope of your curriculum, but I thought you might want lớn see the easy way lớn bởi these trig identities.
$\endgroup$
$\begingroup$
Another method: Take second derivatives of both sides lớn show that $y''=-16y$ on each side. Then show that $\operatorname{left}(0)=\operatorname{right}(0)$ and $\operatorname{left}'(0)=\operatorname{right'}(0)$. This confirms that both sides are the unique solution lớn the differential equation $y''=-16y$ having some specific initial conditions.
answered May 11, năm trước at 21:55
2'5 9'22'5 9'2
55.6k8 gold badges83 silver badges158 bronze badges
$\endgroup$
You must log in lớn answer this question.
Not the answer you're looking for? Browse other questions tagged
.
Not the answer you're looking for? Browse other questions tagged
.